53 research outputs found

    Merging fragments of classical logic

    Full text link
    We investigate the possibility of extending the non-functionally complete logic of a collection of Boolean connectives by the addition of further Boolean connectives that make the resulting set of connectives functionally complete. More precisely, we will be interested in checking whether an axiomatization for Classical Propositional Logic may be produced by merging Hilbert-style calculi for two disjoint incomplete fragments of it. We will prove that the answer to that problem is a negative one, unless one of the components includes only top-like connectives.Comment: submitted to FroCoS 201

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    Interval temporal logic model checking: The border between good and bad HS fragments

    Get PDF
    The model checking problem has thoroughly been explored in the context of standard point-based temporal logics, such as LTL, CTL, and CTL 17, whereas model checking for interval temporal logics has been brought to the attention only very recently. In this paper, we prove that the model checking problem for the logic of Allen\u2019s relations started-by and finished-by is highly intractable, as it can be proved to be EXPSPACE-hard. Such a lower bound immediately propagates to the full Halpern and Shoham\u2019s modal logic of time intervals (HS). In contrast, we show that other noteworthy HS fragments, namely, Propositional Neighbourhood Logic extended with modalities for the Allen relation starts (resp., finishes) and its inverse started-by (resp., finished-by), turn out to have\u2014maybe unexpectedly\u2014the same complexity as LTL (i.e., they are PSPACE-complete), thus joining the group of other already studied, well-behaved albeit less expressive, HS fragments

    Vectorial Languages and Linear Temporal Logic

    Get PDF
    International audienceDetermining for a given deterministic complete automaton the sequence of visited states while reading a given word is the core of important problems with automata-based solutions, such as approximate string matching. The main difficulty is to do this computation efficiently, especially when dealing with very large texts. Considering words as vectors and working on them using vectorial (parallel) operations allows to solve the problem faster than in linear time using sequential computations. In this paper, we show first that the set of vectorial operations needed by an algorithm representing a given automaton depends only on the language accepted by the automaton. We give precise characterizations of vectorial algorithms for star-free, solvable and regular languages in terms of the vectorial operations allowed. We also consider classes of languages associated with restricted sets of vectorial operations and relate them with languages defined by fragments of linear temporal logic. Finally, we consider the converse problem of constructing an automaton from a given vectorial algorithm. As a byproduct, we show that the satisfiability problem for some extensions of linear-time temporal logic characterizing solvable and regular languages is PSPACE-complete

    Interrupt Timed Automata: verification and expressiveness

    Get PDF
    We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid automata well suited to the description of timed multi-task systems with interruptions in a single processor environment. While the reachability problem is undecidable for hybrid automata we show that it is decidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by building a finite automaton as a generalized class graph. We then establish that the reachability problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed. To prove the first result, we define a subclass ITA- of ITA, and show that (1) any ITA can be reduced to a language-equivalent automaton in ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without any class graph). In the next step, we investigate the verification of real time properties over ITA. We prove that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the other hand, we give model checking procedures for two fragments of timed branching time logic. We also compare the expressive power of classical timed automata and ITA and prove that the corresponding families of accepted languages are incomparable. The result also holds for languages accepted by controlled real-time automata (CRTA), that extend timed automata. We finally combine ITA with CRTA, in a model which encompasses both classes and show that the reachability problem is still decidable. Additionally we show that the languages of ITA are neither closed under complementation nor under intersection

    Regular symmetry patterns

    Get PDF
    Symmetry reduction is a well-known approach for alleviating the state explosion problem in model checking. Automatically identifying symmetries in concurrent systems, however, is computationally expensive. We propose a symbolic framework for capturing symmetry patterns in parameterised systems (i.e. an infinite family of finite-state systems): two regular word transducers to represent, respectively, parameterised systems and symmetry patterns. The framework subsumes various types of "symmetry relations" ranging from weaker notions (e.g. simulation preorders) to the strongest notion (i.e. isomorphisms). Our framework enjoys two algorithmic properties: (1) symmetry verification: given a transducer, we can automatically check whether it is a symmetry pattern of a given system, and (2) symmetry synthesis: we can automatically generate a symmetry pattern for a given system in the form of a transducer. Furthermore, our symbolic language allows additional constraints that the symmetry patterns need to satisfy to be easily incorporated in the verification/synthesis. We show how these properties can help identify symmetry patterns in examples like dining philosopher protocols, self-stabilising protocols, and prioritised resource-allocator protocol. In some cases (e.g. Gries's coffee can problem), our technique automatically synthesises a safety-preserving finite approximant, which can then be verified for safety solely using a finite-state model checker.UPMAR

    A SAT-Based Encoding of the One-Pass and Tree-Shaped Tableau System for LTL

    Get PDF
    A new one-pass and tree-shaped tableau system for LTL sat- isfiability checking has been recently proposed, where each branch can be explored independently from others and, furthermore, directly cor- responds to a potential model of the formula. Despite its simplicity, it proved itself to be effective in practice. In this paper, we provide a SAT-based encoding of such a tableau system, based on the technique of bounded satisfiability checking. Starting with a single-node tableau, i.e., depth k of the tree-shaped tableau equal to zero, we proceed in an incremental fashion. At each iteration, the tableau rules are encoded in a Boolean formula, representing all branches of the tableau up to the current depth k. A typical downside of such bounded techniques is the effort needed to understand when to stop incrementing the bound, to guarantee the completeness of the procedure. In contrast, termination and completeness of the proposed algorithm is guaranteed without com- puting any upper bound to the length of candidate models, thanks to the Boolean encoding of the PRUNE rule of the original tableau system. We conclude the paper by describing a tool that implements our procedure, and comparing its performance with other state-of-the-art LTL solvers

    Realizing Omega-regular Hyperproperties

    Full text link
    We studied the hyperlogic HyperQPTL, which combines the concepts of trace relations and ω\omega-regularity. We showed that HyperQPTL is very expressive, it can express properties like promptness, bounded waiting for a grant, epistemic properties, and, in particular, any ω\omega-regular property. Those properties are not expressible in previously studied hyperlogics like HyperLTL. At the same time, we argued that the expressiveness of HyperQPTL is optimal in a sense that a more expressive logic for ω\omega-regular hyperproperties would have an undecidable model checking problem. We furthermore studied the realizability problem of HyperQPTL. We showed that realizability is decidable for HyperQPTL fragments that contain properties like promptness. But still, in contrast to the satisfiability problem, propositional quantification does make the realizability problem of hyperlogics harder. More specifically, the HyperQPTL fragment of formulas with a universal-existential propositional quantifier alternation followed by a single trace quantifier is undecidable in general, even though the projection of the fragment to HyperLTL has a decidable realizability problem. Lastly, we implemented the bounded synthesis problem for HyperQPTL in the prototype tool BoSy. Using BoSy with HyperQPTL specifications, we have been able to synthesize several resource arbiters. The synthesis problem of non-linear-time hyperlogics is still open. For example, it is not yet known how to synthesize systems from specifications given in branching-time hyperlogics like HyperCTL^*.Comment: International Conference on Computer Aided Verification (CAV 2020

    Satisfiability Checking for Mission-Time LTL

    Get PDF
    Mission-time LTL (MLTL) is a bounded variant of MTL over naturals designed to generically specify requirements for mission-based system operation common to aircraft, spacecraft, vehicles, and robots. Despite the utility of MLTL as a specification logic, major gaps remain in analyzing MLTL, e.g., for specification debugging or model checking, centering on the absence of any complete MLTL satisfiability checker. We prove that the MLTL satisfiability checking problem is NEXPTIME-complete and that satisfiability checking MLTL0 , the variant of MLTL where all intervals start at 0, is PSPACE-complete. We introduce translations for MLTL-to-LTL, MLTL-to-LTLf , MLTL-to-SMV, and MLTL-to-SMT, creating four options for MLTL satisfiability checking. Our extensive experimental evaluation shows that the MLTL-to-SMT transition with the Z3 SMT solver offers the most scalable performance
    corecore